Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 89
Filter
1.
Nature ; 626(8000): 827-835, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38355791

ABSTRACT

Individuals differ widely in their immune responses, with age, sex and genetic factors having major roles in this inherent variability1-6. However, the variables that drive such differences in cytokine secretion-a crucial component of the host response to immune challenges-remain poorly defined. Here we investigated 136 variables and identified smoking, cytomegalovirus latent infection and body mass index as major contributors to variability in cytokine response, with effects of comparable magnitudes with age, sex and genetics. We find that smoking influences both innate and adaptive immune responses. Notably, its effect on innate responses is quickly lost after smoking cessation and is specifically associated with plasma levels of CEACAM6, whereas its effect on adaptive responses persists long after individuals quit smoking and is associated with epigenetic memory. This is supported by the association of the past smoking effect on cytokine responses with DNA methylation at specific signal trans-activators and regulators of metabolism. Our findings identify three novel variables associated with cytokine secretion variability and reveal roles for smoking in the short- and long-term regulation of immune responses. These results have potential clinical implications for the risk of developing infections, cancers or autoimmune diseases.


Subject(s)
Adaptive Immunity , Smoking , Female , Humans , Male , Adaptive Immunity/drug effects , Adaptive Immunity/genetics , Autoimmune Diseases/etiology , Autoimmune Diseases/immunology , Body Mass Index , Cytokines/blood , Cytokines/immunology , Cytomegalovirus/immunology , Cytomegalovirus/pathogenicity , Cytomegalovirus/physiology , DNA Methylation/drug effects , Epigenesis, Genetic/drug effects , Immunity, Innate/drug effects , Immunity, Innate/genetics , Infections/etiology , Infections/immunology , Neoplasms/etiology , Neoplasms/immunology , Signal Transduction/drug effects , Signal Transduction/immunology , Smoking/adverse effects , Smoking/blood , Smoking/genetics , Smoking/immunology
2.
Pediatr Allergy Immunol ; 35(2): e14073, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38351896

ABSTRACT

PURPOSE: We aimed to describe the clinical, immunological, and genetic features of patients with DOCK8 deficiency (DOCK8-Def) in a tertiary care center for children. METHODS: Retrospective chart review of patients' clinical, immunological, and genetic characteristics with DOCK8-Def. Genetic analysis was performed with targeted- or whole-exome sequencing; we also assessed DOCK8 protein expression and a lymphoproliferation assay and analyzed survival by the Kaplan-Meier method. RESULTS: We described 11 patients from 8 unrelated kindreds. The median age at symptoms' onset was 10 months (range 1-54 months). The median follow-up time was 53.4 months (4.8-118.8). All patients presented eczema and recurrent sinopulmonary and cutaneous infections. Besides those symptoms, the most frequent manifestations were bronchiectases (8/11), food allergies (6/11), and severe infections (6/11). Infrequent characteristics were detection of CMV in bronchial lavage, C. parvum-driven sclerosing cholangitis, Takayasu vasculitis, neurological syndromes, pulmonary tuberculosis, and lymphomatoid granulomatosis. CONCLUSION: DOCK8-Def has a broad spectrum of manifestations, including allergy, autoimmunity, inflammation, infection, and cancer. The hallmark of this inborn error of immunity is IEI-associated eczema with eosinophilia and increased IgE. Here, we report six new mutations causing human DOCK8 deficiency and symptoms previously unrecognized to occur in DOCK8-Def. Therefore, an early diagnosis of DOCK8-Def is essential to facilitate an adequate treatment such as HSCT.


Subject(s)
Eczema , Hypersensitivity , Job Syndrome , Child , Humans , Infant , Child, Preschool , Retrospective Studies , Job Syndrome/genetics , Eczema/epidemiology , Eczema/genetics , Mutation , Guanine Nucleotide Exchange Factors/genetics
3.
Gut Microbes ; 15(2): 2287618, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38017705

ABSTRACT

Candida albicans is a commensal yeast present in the gut of most healthy individuals but with highly variable concentrations. However, little is known about the host factors that influence colonization densities. We investigated how microbiota, host lifestyle factors, and genetics could shape C. albicans intestinal carriage in 695 healthy individuals from the Milieu Intérieur cohort. C. albicans intestinal carriage was detected in 82.9% of the subjects using quantitative PCR. Using linear mixed models and multiway-ANOVA, we explored C. albicans intestinal levels with regard to gut microbiota composition and lifestyle factors including diet. By analyzing shotgun metagenomics data and C. albicans qPCR data, we showed that Intestinimonas butyriciproducens was the only gut microbiota species whose relative abundance was negatively correlated with C. albicans concentration. Diet is also linked to C. albicans growth, with eating between meals and a low-sodium diet being associated with higher C. albicans levels. Furthermore, by Genome-Wide Association Study, we identified 26 single nucleotide polymorphisms suggestively associated with C. albicans colonization. In addition, we found that the intestinal levels of C. albicans might influence the host immune response, specifically in response to fungal challenge. We analyzed the transcriptional levels of 546 immune genes and the concentration of 13 cytokines after whole blood stimulation with C. albicans cells and showed positive associations between the extent of C. albicans intestinal levels and NLRP3 expression, as well as secreted IL-2 and CXCL5 concentrations. Taken together, these findings open the way for potential new interventional strategies to curb C. albicans intestinal overgrowth.


Subject(s)
Candida albicans , Gastrointestinal Microbiome , Humans , Candida albicans/physiology , Genome-Wide Association Study , Gastrointestinal Microbiome/physiology , Diet , Immunity
4.
Nature ; 621(7977): 120-128, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37558883

ABSTRACT

Humans display substantial interindividual clinical variability after SARS-CoV-2 infection1-3, the genetic and immunological basis of which has begun to be deciphered4. However, the extent and drivers of population differences in immune responses to SARS-CoV-2 remain unclear. Here we report single-cell RNA-sequencing data for peripheral blood mononuclear cells-from 222 healthy donors of diverse ancestries-that were stimulated with SARS-CoV-2 or influenza A virus. We show that SARS-CoV-2 induces weaker, but more heterogeneous, interferon-stimulated gene activity compared with influenza A virus, and a unique pro-inflammatory signature in myeloid cells. Transcriptional responses to viruses display marked population differences, primarily driven by changes in cell abundance including increased lymphoid differentiation associated with latent cytomegalovirus infection. Expression quantitative trait loci and mediation analyses reveal a broad effect of cell composition on population disparities in immune responses, with genetic variants exerting a strong effect on specific loci. Furthermore, we show that natural selection has increased population differences in immune responses, particularly for variants associated with SARS-CoV-2 response in East Asians, and document the cellular and molecular mechanisms by which Neanderthal introgression has altered immune functions, such as the response of myeloid cells to viruses. Finally, colocalization and transcriptome-wide association analyses reveal an overlap between the genetic basis of immune responses to SARS-CoV-2 and COVID-19 severity, providing insights into the factors contributing to current disparities in COVID-19 risk.


Subject(s)
COVID-19 , Genetics, Population , SARS-CoV-2 , Single-Cell Gene Expression Analysis , Animals , Humans , Cell Differentiation , COVID-19/genetics , COVID-19/immunology , COVID-19/virology , Cytomegalovirus/physiology , East Asian People/genetics , Genetic Introgression , Influenza A virus/pathogenicity , Influenza A virus/physiology , Interferons/immunology , Leukocytes, Mononuclear/immunology , Leukocytes, Mononuclear/metabolism , Myeloid Cells/immunology , Neanderthals/genetics , Neanderthals/immunology , SARS-CoV-2/genetics , SARS-CoV-2/immunology , SARS-CoV-2/pathogenicity , SARS-CoV-2/physiology , Selection, Genetic , Virus Latency
5.
Cell Genom ; 3(2): 100248, 2023 Feb 08.
Article in English | MEDLINE | ID: mdl-36819665

ABSTRACT

Ancient genomics can directly detect human genetic adaptation to environmental cues. However, it remains unclear how pathogens have exerted selective pressures on human genome diversity across different epochs and affected present-day inflammatory disease risk. Here, we use an ancestry-aware approximate Bayesian computation framework to estimate the nature, strength, and time of onset of selection acting on 2,879 ancient and modern European genomes from the last 10,000 years. We found that the bulk of genetic adaptation occurred after the start of the Bronze Age, <4,500 years ago, and was enriched in genes relating to host-pathogen interactions. Furthermore, we detected directional selection acting on specific leukocytic lineages and experimentally demonstrated that the strongest negatively selected candidate variant in immunity genes, lipopolysaccharide-binding protein (LBP) D283G, is hypomorphic. Finally, our analyses suggest that the risk of inflammatory disorders has increased in post-Neolithic Europeans, possibly because of antagonistic pleiotropy following genetic adaptation to pathogens.

6.
Front Epidemiol ; 3: 1201038, 2023.
Article in English | MEDLINE | ID: mdl-38455935

ABSTRACT

Background: French Polynesia is a French overseas collectivity in the Southeast Pacific, comprising 75 inhabited islands across five archipelagoes. The human settlement of the region corresponds to the last massive migration of humans to empty territories, but its timeline is still debated. Despite their recent population history and geographical isolation, inhabitants of French Polynesia experience health issues similar to those of continental countries. Modern lifestyles and increased longevity have led to a rise in non-communicable diseases (NCDs) such as obesity, diabetes, hypertension, and cardiovascular diseases. Likewise, international trade and people mobility have caused the emergence of communicable diseases (CDs) including mosquito-borne and respiratory diseases. Additionally, chronic pathologies including acute rheumatic fever, liver diseases, and ciguatera, are highly prevalent in French Polynesia. However, data on such diseases are scarce and not representative of the geographic fragmentation of the population. Objectives: The present project aims to estimate the prevalence of several NCDs and CDs in the population of the five archipelagoes, and identify associated risk factors. Moreover, genetic analyses will contribute to determine the sequence and timings of the peopling history of French Polynesia, and identify causal links between past genetic adaptation to island environments, and present-day susceptibility to certain diseases. Methods: This cross-sectional survey is based on the random selection of 2,100 adults aged 18-69 years and residing on 18 islands from the five archipelagoes. Each participant answered a questionnaire on a wide range of topics (including demographic characteristics, lifestyle habits and medical history), underwent physical measurements (height, weight, waist circumference, arterial pressure, and skin pigmentation), and provided biological samples (blood, saliva, and stool) for biological, genetic and microbiological analyses. Conclusion: For the first time in French Polynesia, the present project allows to collect a wide range of data to explore the existence of indicators and/or risk factors for multiple pathologies of public health concern. The results will help health authorities to adapt actions and preventive measures aimed at reducing the incidence of NCDs and CDs. Moreover, the new genomic data generated in this study, combined with anthropological data, will increase our understanding of the peopling history of French Polynesia. Clinical trial registration: https://clinicaltrials.gov/, identifier: NCT06133400.

7.
Nat Commun ; 13(1): 5895, 2022 10 06.
Article in English | MEDLINE | ID: mdl-36202838

ABSTRACT

Epigenetic changes are required for normal development, yet the nature and respective contribution of factors that drive epigenetic variation in humans remain to be fully characterized. Here, we assessed how the blood DNA methylome of 884 adults is affected by DNA sequence variation, age, sex and 139 factors relating to life habits and immunity. Furthermore, we investigated whether these effects are mediated or not by changes in cellular composition, measured by deep immunophenotyping. We show that DNA methylation differs substantially between naïve and memory T cells, supporting the need for adjustment on these cell-types. By doing so, we find that latent cytomegalovirus infection drives DNA methylation variation and provide further support that the increased dispersion of DNA methylation with aging is due to epigenetic drift. Finally, our results indicate that cellular composition and DNA sequence variation are the strongest predictors of DNA methylation, highlighting critical factors for medical epigenomics studies.


Subject(s)
DNA Methylation , Epigenomics , Adult , Aging/genetics , Epigenesis, Genetic , Epigenomics/methods , Humans , Immunologic Factors
8.
Curr Biol ; 32(21): 4565-4575.e6, 2022 11 07.
Article in English | MEDLINE | ID: mdl-36108636

ABSTRACT

The Vanuatu archipelago served as a gateway to Remote Oceania during one of the most extensive human migrations to uninhabited lands ∼3,000 years ago. Ancient DNA studies suggest an initial settlement by East Asian-related peoples that was quickly followed by the arrival of Papuan-related populations, leading to a major population turnover. Yet there is uncertainty over the population processes and the sociocultural factors that have shaped the genomic diversity of ni-Vanuatu, who present nowadays among the world's highest linguistic and cultural diversity. Here, we report new genome-wide data for 1,433 contemporary ni-Vanuatu from 29 different islands, including 287 couples. We find that ni-Vanuatu derive their East Asian- and Papuan-related ancestry from the same source populations and descend from relatively synchronous, sex-biased admixture events that occurred ∼1,700-2,300 years ago, indicating a peopling history common to the whole archipelago. However, East Asian-related ancestry proportions differ markedly across islands, suggesting that the Papuan-related population turnover was geographically uneven. Furthermore, we detect Polynesian ancestry arriving ∼600-1,000 years ago to Central and South Vanuatu in both Polynesian-speaking and non-Polynesian-speaking populations. Last, we provide evidence for a tendency of spouses to carry similar genetic ancestry, when accounting for relatedness avoidance. The signal is not driven by strong genetic effects of specific loci or trait-associated variants, suggesting that it results instead from social assortative mating. Altogether, our findings provide an insight into both the genetic history of ni-Vanuatu populations and how sociocultural processes have shaped the diversity of their genomes.


Subject(s)
DNA, Ancient , Human Migration , Humans , Genomics , Genome, Human , Native Hawaiian or Other Pacific Islander , Genetics, Population
9.
Cell Rep ; 39(13): 110989, 2022 06 28.
Article in English | MEDLINE | ID: mdl-35767946

ABSTRACT

The interleukin-12 (IL-12) family comprises the only heterodimeric cytokines mediating diverse functional effects. We previously reported a striking bimodal IL-12p70 response to lipopolysaccharide (LPS) stimulation in healthy donors. Herein, we demonstrate that interferon ß (IFNß) is a major upstream determinant of IL-12p70 production, which is also associated with numbers and activation of circulating monocytes. Integrative modeling of proteomic, genetic, epigenomic, and cellular data confirms IFNß as key for LPS-induced IL-12p70 and allowed us to compare the relative effects of each of these parameters on variable cytokine responses. Clinical relevance of our findings is supported by reduced IFNß-IL-12p70 responses in patients hospitalized with acute severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection or chronically infected with hepatitis C (HCV). Importantly, these responses are resolved after viral clearance. Our systems immunology approach defines a better understanding of IL-12p70 and IFNß in healthy and infected persons, providing insights into how common genetic and epigenetic variation may impact immune responses to bacterial infection.


Subject(s)
Interferon-beta , Interleukin-12 , Toll-Like Receptor 4 , COVID-19/immunology , COVID-19/metabolism , COVID-19/virology , Cytokines/immunology , Cytokines/metabolism , Humans , Interferon-beta/immunology , Interferon-beta/metabolism , Interleukin-12/immunology , Interleukin-12/metabolism , Lipopolysaccharides/pharmacology , Proteomics , SARS-CoV-2/immunology
10.
Curr Biol ; 32(8): R362-R365, 2022 04 25.
Article in English | MEDLINE | ID: mdl-35472423

ABSTRACT

It is commonly thought that the spread of agriculture and farmers led to the decline of hunter-gatherer populations. A new study found that the demographic responses of Ethiopian foragers to this major cultural transition have been more diverse than anticipated.


Subject(s)
Agriculture , Farmers , Black People , Humans , Population Groups
11.
Genome Med ; 14(1): 28, 2022 03 09.
Article in English | MEDLINE | ID: mdl-35264221

ABSTRACT

BACKGROUND: Blood plasma proteins play an important role in immune defense against pathogens, including cytokine signaling, the complement system, and the acute-phase response. Recent large-scale studies have reported genetic (i.e., protein quantitative trait loci, pQTLs) and non-genetic factors, such as age and sex, as major determinants to inter-individual variability in immune response variation. However, the contribution of blood-cell composition to plasma protein heterogeneity has not been fully characterized and may act as a mediating factor in association studies. METHODS: Here, we evaluated plasma protein levels from 400 unrelated healthy individuals of western European ancestry, who were stratified by sex and two decades of life (20-29 and 60-69 years), from the Milieu Intérieur cohort. We quantified 229 proteins by Luminex in a clinically certified laboratory and their levels of variation were analyzed together with 5.2 million single-nucleotide polymorphisms. With respect to non-genetic variables, we included 254 lifestyle and biochemical factors, as well as counts of seven circulating immune cell populations measured by hemogram and standardized flow cytometry. RESULTS: Collectively, we found 152 significant associations involving 49 proteins and 20 non-genetic variables. Consistent with previous studies, age and sex showed a global, pervasive impact on plasma protein heterogeneity, while body mass index and other health status variables were among the non-genetic factors with the highest number of associations. After controlling for these covariates, we identified 100 and 12 pQTLs acting in cis and trans, respectively, collectively associated with 87 plasma proteins and including 19 novel genetic associations. Genetic factors explained the largest fraction of the variability of plasma protein levels, as compared to non-genetic factors. In addition, blood-cell fractions, including leukocytes, lymphocytes, monocytes, neutrophils, eosinophils, basophils, and platelets, had a larger contribution to inter-individual variability than age and sex and appeared as confounders of specific genetic associations. Finally, we identified new genetic associations with plasma protein levels of five monogenic Mendelian disease genes including two primary immunodeficiency genes (Ficolin-3 and FAS). CONCLUSIONS: Our study identified novel genetic and non-genetic factors associated to plasma protein levels which may inform health status and disease management.


Subject(s)
Blood Proteins , Primary Immunodeficiency Diseases , Blood Proteins/genetics , Genome-Wide Association Study , Health Status , Humans , Polymorphism, Single Nucleotide , Quantitative Trait Loci
12.
Am J Hum Genet ; 109(4): 710-726, 2022 04 07.
Article in English | MEDLINE | ID: mdl-35259336

ABSTRACT

Admixture has been a pervasive phenomenon in human history, extensively shaping the patterns of population genetic diversity. There is increasing evidence to suggest that admixture can also facilitate genetic adaptation to local environments, i.e., admixed populations acquire beneficial mutations from source populations, a process that we refer to as "adaptive admixture." However, the role of adaptive admixture in human evolution and the power to detect it remain poorly characterized. Here, we use extensive computer simulations to evaluate the power of several neutrality statistics to detect natural selection in the admixed population, assuming multiple admixture scenarios. We show that statistics based on admixture proportions, Fadm and LAD, show high power to detect mutations that are beneficial in the admixed population, whereas other statistics, including iHS and FST, falsely detect neutral mutations that have been selected in the source populations only. By combining Fadm and LAD into a single, powerful statistic, we scanned the genomes of 15 worldwide, admixed populations for signatures of adaptive admixture. We confirm that lactase persistence and resistance to malaria have been under adaptive admixture in West Africans and in Malagasy, North Africans, and South Asians, respectively. Our approach also uncovers other cases of adaptive admixture, including APOL1 in Fulani nomads and PKN2 in East Indonesians, involved in resistance to infection and metabolism, respectively. Collectively, our study provides evidence that adaptive admixture has occurred in human populations whose genetic history is characterized by periods of isolation and spatial expansions resulting in increased gene flow.


Subject(s)
Genomics , Selection, Genetic , Adaptation, Physiological/genetics , Apolipoprotein L1/genetics , Black People , Gene Flow , Genetics, Population , Humans , Polymorphism, Single Nucleotide
13.
Genetics ; 219(4)2021 12 10.
Article in English | MEDLINE | ID: mdl-34849862

ABSTRACT

During their dispersals over the last 100,000 years, modern humans have been exposed to a large variety of environments, resulting in genetic adaptation. While genome-wide scans for the footprints of positive Darwinian selection have increased knowledge of genes and functions potentially involved in human local adaptation, they have globally produced evidence of a limited contribution of selective sweeps in humans. Conversely, studies based on machine learning algorithms suggest that recent sweeps from standing variation are widespread in humans, an observation that has been recently questioned. Here, we sought to formally quantify the number of recent selective sweeps in humans, by leveraging approximate Bayesian computation and whole-genome sequence data. Our computer simulations revealed suitable ABC estimations, regardless of the frequency of the selected alleles at the onset of selection and the completion of sweeps. Under a model of recent selection from standing variation, we inferred that an average of 68 (from 56 to 79) and 140 (from 94 to 198) sweeps occurred over the last 100,000 years of human history, in African and Eurasian populations, respectively. The former estimation is compatible with human adaptation rates estimated since divergence with chimps, and reveals numbers of sweeps per generation per site in the range of values estimated in Drosophila. Our results confirm the rarity of selective sweeps in humans and show a low contribution of sweeps from standing variation to recent human adaptation.


Subject(s)
Computational Biology , Genetic Variation , Selection, Genetic , Adaptation, Physiological , Animals , Bayes Theorem , Biological Evolution , Biological Variation, Population , Computer Simulation , Humans
14.
Curr Opin Immunol ; 72: 116-125, 2021 10.
Article in English | MEDLINE | ID: mdl-33992907

ABSTRACT

Population genetic studies have clearly indicated that immunity and host defense are among the functions most frequently subject to natural selection, and increased our understanding of the biological relevance of the corresponding genes and their contribution to variable immune traits and diseases. Herein, we will focus on some recently studied forms of human adaptation to infectious agents, including hybridization with now-extinct hominins, such as Neanderthals and Denisovans, and admixture between modern human populations. These studies, which are partly enabled by the technological advances in the sequencing of DNA from ancient remains, provide new insight into the sources of immune response variation in contemporary humans, such as the recently reported link between Neanderthal heritage and susceptibility to severe COVID-19 disease. Furthermore, ancient DNA analyses, in both humans and pathogens, allow to measure the action of natural selection on immune genes across time and to reconstruct the impact of past epidemics on the evolution of human immunity.


Subject(s)
COVID-19/immunology , Immunity/genetics , SARS-CoV-2/physiology , Animals , COVID-19/epidemiology , COVID-19/genetics , Evolution, Molecular , Genetic Predisposition to Disease , Genetics, Population , Genomics , Hominidae , Humans
15.
Nature ; 592(7855): 583-589, 2021 04.
Article in English | MEDLINE | ID: mdl-33854233

ABSTRACT

The Pacific region is of major importance for addressing questions regarding human dispersals, interactions with archaic hominins and natural selection processes1. However, the demographic and adaptive history of Oceanian populations remains largely uncharacterized. Here we report high-coverage genomes of 317 individuals from 20 populations from the Pacific region. We find that the ancestors of Papuan-related ('Near Oceanian') groups underwent a strong bottleneck before the settlement of the region, and separated around 20,000-40,000 years ago. We infer that the East Asian ancestors of Pacific populations may have diverged from Taiwanese Indigenous peoples before the Neolithic expansion, which is thought to have started from Taiwan around 5,000 years ago2-4. Additionally, this dispersal was not followed by an immediate, single admixture event with Near Oceanian populations, but involved recurrent episodes of genetic interactions. Our analyses reveal marked differences in the proportion and nature of Denisovan heritage among Pacific groups, suggesting that independent interbreeding with highly structured archaic populations occurred. Furthermore, whereas introgression of Neanderthal genetic information facilitated the adaptation of modern humans related to multiple phenotypes (for example, metabolism, pigmentation and neuronal development), Denisovan introgression was primarily beneficial for immune-related functions. Finally, we report evidence of selective sweeps and polygenic adaptation associated with pathogen exposure and lipid metabolism in the Pacific region, increasing our understanding of the mechanisms of biological adaptation to island environments.


Subject(s)
Adaptation, Biological/genetics , Biological Evolution , Genetics, Population , Genome, Human/genetics , Genomics , Human Migration/history , Islands , Native Hawaiian or Other Pacific Islander/genetics , Animals , Australia , Datasets as Topic , Asia, Eastern , Genetic Introgression , History, Ancient , Humans , Neanderthals/genetics , Oceania , Pacific Ocean , Taiwan
16.
Am J Hum Genet ; 108(3): 517-524, 2021 03 04.
Article in English | MEDLINE | ID: mdl-33667394

ABSTRACT

Tuberculosis (TB), usually caused by Mycobacterium tuberculosis bacteria, is the first cause of death from an infectious disease at the worldwide scale, yet the mode and tempo of TB pressure on humans remain unknown. The recent discovery that homozygotes for the P1104A polymorphism of TYK2 are at higher risk to develop clinical forms of TB provided the first evidence of a common, monogenic predisposition to TB, offering a unique opportunity to inform on human co-evolution with a deadly pathogen. Here, we investigate the history of human exposure to TB by determining the evolutionary trajectory of the TYK2 P1104A variant in Europe, where TB is considered to be the deadliest documented infectious disease. Leveraging a large dataset of 1,013 ancient human genomes and using an approximate Bayesian computation approach, we find that the P1104A variant originated in the common ancestors of West Eurasians ∼30,000 years ago. Furthermore, we show that, following large-scale population movements of Anatolian Neolithic farmers and Eurasian steppe herders into Europe, P1104A has markedly fluctuated in frequency over the last 10,000 years of European history, with a dramatic decrease in frequency after the Bronze Age. Our analyses indicate that such a frequency drop is attributable to strong negative selection starting ∼2,000 years ago, with a relative fitness reduction on homozygotes of 20%, among the highest in the human genome. Together, our results provide genetic evidence that TB has imposed a heavy burden on European health over the last two millennia.


Subject(s)
DNA, Ancient/analysis , Polymorphism, Genetic/genetics , TYK2 Kinase/genetics , Tuberculosis/genetics , Body Remains , Europe , Female , Genome, Human/genetics , History, Ancient , Humans , Male , Tuberculosis/history , Tuberculosis/microbiology
17.
Proc Natl Acad Sci U S A ; 118(3)2021 01 19.
Article in English | MEDLINE | ID: mdl-33408250

ABSTRACT

Genetic variants underlying life-threatening diseases, being unlikely to be transmitted to the next generation, are gradually and selectively eliminated from the population through negative selection. We study the determinants of this evolutionary process in human genes underlying monogenic diseases by comparing various negative selection scores and an integrative approach, CoNeS, at 366 loci underlying inborn errors of immunity (IEI). We find that genes underlying autosomal dominant (AD) or X-linked IEI have stronger negative selection scores than those underlying autosomal recessive (AR) IEI, whose scores are not different from those of genes not known to be disease causing. Nevertheless, genes underlying AR IEI that are lethal before reproductive maturity with complete penetrance have stronger negative selection scores than other genes underlying AR IEI. We also show that genes underlying AD IEI by loss of function have stronger negative selection scores than genes underlying AD IEI by gain of function, while genes underlying AD IEI by haploinsufficiency are under stronger negative selection than other genes underlying AD IEI. These results are replicated in 1,140 genes underlying inborn errors of neurodevelopment. Finally, we propose a supervised classifier, SCoNeS, which predicts better than state-of-the-art approaches whether a gene is more likely to underlie an AD or AR disease. The clinical outcomes of monogenic inborn errors, together with their mode and mechanisms of inheritance, determine the levels of negative selection at their corresponding loci. Integrating scores of negative selection may facilitate the prioritization of candidate genes and variants in patients suspected to carry an inborn error.


Subject(s)
Immunity/genetics , Metabolism, Inborn Errors/genetics , Selection, Genetic/genetics , Genes, Dominant/genetics , Genes, Recessive/genetics , Genetic Variation/genetics , Genetic Variation/immunology , Humans , Metabolism, Inborn Errors/immunology , Metabolism, Inborn Errors/pathology
18.
Br J Nutr ; 126(7): 982-992, 2021 10 14.
Article in English | MEDLINE | ID: mdl-33298217

ABSTRACT

Host-microbial co-metabolism products are being increasingly recognised to play important roles in physiological processes. However, studies undertaking a comprehensive approach to consider host-microbial metabolic relationships remain scarce. Metabolomic analysis yielding detailed information regarding metabolites found in a given biological compartment holds promise for such an approach. This work aimed to explore the associations between host plasma metabolomic signatures and gut microbiota composition in healthy adults of the Milieu Intérieur study. For 846 subjects, gut microbiota composition was profiled through sequencing of the 16S rRNA gene in stools. Metabolomic signatures were generated through proton NMR analysis of plasma. The associations between metabolomic variables and α- and ß-diversity indexes and relative taxa abundances were tested using multi-adjusted partial Spearman correlations, permutational ANOVA and multivariate associations with linear models, respectively. A multiple testing correction was applied (Benjamini-Hochberg, 10 % false discovery rate). Microbial richness was negatively associated with lipid-related signals and positively associated with amino acids, choline, creatinine, glucose and citrate (-0·133 ≤ Spearman's ρ ≤ 0·126). Specific associations between metabolomic signals and abundances of taxa were detected (twenty-five at the genus level and nineteen at the species level): notably, numerous associations were observed for creatinine (positively associated with eleven species and negatively associated with Faecalibacterium prausnitzii). This large-scale population-based study highlights metabolites associated with gut microbial features and provides new insights into the understanding of complex host-gut microbiota metabolic relationships. In particular, our results support the implication of a 'gut-kidney axis'. More studies providing a detailed exploration of these complex interactions and their implications for host health are needed.


Subject(s)
Gastrointestinal Microbiome , Metabolome , Adult , Creatinine , Feces , Humans , Metabolomics , Plasma/chemistry , RNA, Ribosomal, 16S/genetics
19.
J Exp Med ; 218(1)2021 01 04.
Article in English | MEDLINE | ID: mdl-33175106

ABSTRACT

As microbial therapeutics are increasingly being tested in diverse patient populations, it is essential to understand the host and environmental factors influencing the microbiome. Through analysis of 1,359 gut microbiome samples from 946 healthy donors of the Milieu Intérieur cohort, we detail how microbiome composition is associated with host factors, lifestyle parameters, and disease states. Using a genome-based taxonomy, we found biological sex was the strongest driver of community composition. Additionally, bacterial populations shift across decades of life (age 20-69), with Bacteroidota species consistently increased with age while Actinobacteriota species, including Bifidobacterium, decreased. Longitudinal sampling revealed that short-term stability exceeds interindividual differences. By accounting for these factors, we defined global shifts in the microbiomes of patients with non-gastrointestinal tumors compared with healthy donors. Together, these results demonstrated that the microbiome displays predictable variations as a function of sex, age, and disease state. These variations must be considered when designing microbiome-targeted therapies or interpreting differences thought to be linked to pathophysiology or therapeutic response.


Subject(s)
Bifidobacterium/growth & development , Gastrointestinal Microbiome , Neoplasms/microbiology , Adult , Aged , Bifidobacterium/classification , Female , Humans , Male , Middle Aged
SELECTION OF CITATIONS
SEARCH DETAIL
...